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Abstract

Recent findings revealed that certain viruses encoded microRNA-like small RNAs using
the RNA interference machinery in the host cells. However, the function of these virus-
encoded microRNA-like small RNAs remained unclear, and whether these microRNA-
like small RNAs were involved in the replication of the virus and viral infection was
still disputable. In this chapter, the negative-sense RNA genome of Ebola virus (EBOV)
was scanned using bioinformatics tools to predict the EBOV-encoded microRNA-like
small RNAs. Then, the potential influence of viral microRNA-like small RNAs on the
viral immune evasion, host cellular signaling pathway, and epigenetic regulation of
antiviral  defense  mechanism  were  also  detected  by  the  reconstructed  regulatory
network of target genes associated with viral encoded microRNA-like small RNAs. In
this analysis, EBOV-encoded microRNA-like small RNAs were proposed to inhibit the
host immune response factors, probably facilitating the evasion of EBOV from the host
defense mechanisms. In conclusion, systematic investigation of microRNA-like small
RNAs in EBOV genome may shed light on the underlying molecular mechanisms of the
pathological process of Ebola virus disease (EVD).
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1. Introduction

Zaire Ebola virus (ZEBOV) has the highest case-fatality rate with an average of approximate‐
ly 83% over the past 27 years [1]. Its first outbreak took place on August 26, 1976, in Yambuku
[2], and the virus was also responsible for the 2014 West Africa outbreak, which was the largest



EBOV outbreak in record [3–6]. Moreover, neither antiviral drugs nor effective treatment was
available for EBOV or Ebola virus disease (EVD) at that time [7, 8]. MicroRNAs originate from
a wide variety of primary transcripts (pri-miRNAs) that are generated by RNA polymerase II
(pol II) in all eukaryotes [9] or by RNA polymerase III (pol III) in some viruses [10]. The cleavage
of pri-miRNAs releases a RNA hairpin intermediate (~70 nt) containing a characteristic 2 nt 3’
overhang, named a premature miRNA (pre-miRNA), which is further processed to generate
the 21~23 nt mature miRNA from its arm of ~70 nt imperfect stem-loop structure [11, 12].

Since microRNAs have been discovered and their role in gene expression regulation was
established, it has been hypothesized that viruses could encode microRNA-like small RNAs
as well, and these virus-encoded microRNA-like small RNAs were proposed to play important
regulatory roles in viral immune evasion and systemic pathogenesis [13–15]. The size of viral
encoded microRNA-like RNAs has a significant advantage given the tight constraints on viral
genome size, which is also small enough to escape from the triggered host immune pathway.
It was found that viral encoded microRNA-like small RNAs could downregulate the expres‐
sion of host immune defense gene, resulting in increased viral replication or evasion from host
immune surveillance [16, 17]. Until now, more than 60 viral microRNA-like small RNAs have
been identified [18–24], most of which came from Herpes virues [25]. Only a small part of such
RNAs was detected within Retrovirus, Adenovirus, and polyomavirus families [26–28].

Bioinformatics-driven prediction was an effective method to identify viral encoded micro‐
RNA-like small RNAs [21, 22]. In this study, the microRNA prediction program, VMir, was
applied to scan the viral genomes for the presence of stem-loop structures in the pri- and pre-
miRNAs and identify potential candidate stretches capable to form stable secondary stem-loop
structures. Afterward, putative mature microRNA-like small RNAs were validated using
MatureBayes [29]. The systemic prediction of the potential EBOV-encoded microRNA-like
small RNAs along with their target genes on the genome-wide scale helps to further assess the
function of microRNAs during viral infection and virus-host interactions in the EVD patho‐
genesis.

2. Methods

2.1. EBOV whole genome sequences and alignment

The full-length genome sequences of EBOV were retrieved from the genome browser at Ebola
virus resource (http://www.ncbi.nlm.nih.gov/genome/viruses/variation/ebola/) and UCSC
Ebola portal (https://genome.ucsc.edu/ebolaPortal/). MAFFT Multiple Sequence Alignment
Software Version 7 were applied for the alignment of the EBOV genomes [30].

2.2. Bioinformatics prediction of the EBOV genome-encoded microRNA-like small RNAs

Briefly, the viral genome was scanned for stem-loop structures of miRNA precursor (pre-
miRNA) using VMir [31] with default parameter settings (http://www.hpi-hamburg.de/
research/departments-and-research-groups/antiviral-defense-mechanism/software-down-
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load.html). The putative pre-miRNAs with VMir score ≥150 and a window count ≥ 35 were
retained. Then, MiPred software [32] was applied to check all of the putative miRNA precur‐
sors, and precursors with confidence equal to or greater than 70% were further analyzed.
Subsequently, mature miRNA sequences were predicted from the putative pre-miRNA stem-
loops. Finally, the MatureBayes tool [29] was used to extend the prediction coverage of the
mature miRNAs under default parameter settings.

2.3. Prediction of the target genes and signaling pathway analysis

Target genes of predicted EBOV-encoded microRNA-like small RNAs in the human genome
were predicted using TargetScan [33]. Putative targets within the viral genome were predicted
using TargetScan Perl script. The signaling pathways collected from the Kyoto Encyclopedia
of Genes and Genomes (KEGG) [34–36] PATHWAY databases were applied in the pathway
analysis.

Figure 1. The predicted EBOV-encoded pre-miRNAs and microRNA-like small RNAs. The MiPred algorithm was
used to identify genuine pre-miRNAs, and the MatureBayes tool was used to predict the mature miRNA sequences.
(A) The secondary structures of the four EBOV pre-miRNAs. (B) The tertiary structures of the EBOV-encoded micro‐
RNA-like small RNAs.
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2.4. Constructing gene regulation network

The genetic regulation network was constructed based on systematic integration of various
datasets. Transcription factors related with the target genes of EBOV-encoded microRNA-like
small RNAs were selected from Transcriptional Regulatory Element Database (TRED) [37–
39]. The integrated regulatory network of target genes with transcription factors was con‐
structed using Cytoscape software (http://cytoscape.org/).

3. Key findings regarding the bioinformatics prediction of EBOV genome-
encoded microRNA-like small RNAs

3.1. Predicted precursor and mature EBOV genome-encoded microRNA-like small RNAs

The released full-length genome sequences of the retrieved EBOV strains were aligned and
then scanned for miRNA precursor (pre-miRNA) using VMir software. Afterward, the
putative pre-miRNAs with VMir score ≥150 and a window count ≥35 were selected for further
assessment. Within the EBOV genome, four putative microRNA precursors, EBOV-pre-
miRNA-1, EBOV-pre-miRNA-2, EBOV-pre-miRNA-3, and EBOV-pre-miRNA-4 were predict‐
ed (Figure 1A). The mature miRNA sequences were predicted from the putative pre-miRNA
stem loops. Seven different mature EBOV miRNA candidates, including EBOV-miR-1-5p,
EBOV-miR-1-3p, EBOV-miR-2-5p, EBOV-miR-2-3p, EBOV-miR-3-5p, EBOV-miR-3-3p, EBOV-
miR-4-5p, and EBOV-miR-4-3p were resolved using MatureBayes tool (Figure 1B).

3.2. Bioinformatics analysis of the genetic regulation network in the target genes of EBOV
genome-encoded microRNA-like small RNAs

Target genes of the predicted mature microRNA-like small RNAs were searched within
TargetScan, and the potential target genes in host were identified (Table S1, the list of potential
target genes of EBOV-encoded microRNA-like small RNAs). KEGG pathway enrichment
analysis was performed using the DAVID bioinformatics tool for these target genes. The results
showed that the target genes were closely related on function and were involved in multiple
canonical pathways, such as NF-kB activation by viruses, role of protein kinase (PKR) in
interferon induction and antiviral response, induction of apoptosis by HIV1, B cell-activating
factor signaling, and role of PI3K/AKT signaling in the pathogenesis of influenza, which were
important in human immune response to virus infection (Table 1).

Canonical pathways p-Value Ratio Molecules

AMPK signaling 1.49E+00 2.26E-02 PDRK1, FASN, ADRA2B, RRKAB2

Angiopoietin signaling 4.47E-01 1.54E-02 NFKBIE

April mediated signaling 6.43E-01 2.63E-02 NFKBIE

ATM signaling 4.81E-01 1.69E-02 MRE11A
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Canonical pathways p-Value Ratio Molecules

B cell activating factor signaling 6.24E-01 2.5E-02 NFKBIE

B cell receptor signaling 4.92E-01 1.17E-02 PDPK1, NFKBIE

CD27 signaling in lymphocytes 5.34E-01 1.96E-02 NFKBIE

CD28 signaling in t helper cells 7.5E-01 1.77E-02 PDPK1, NFKBIE

CD40 signaling 4.53E-01 1.56E-02 NFKBIE

bf2 signaling 4.89E-01 1.16E-02 PDPK1, EIF2AK4

ErbB signaling 3.58E-01 1.18E-02 PDPK1

ErbB2-ErbB3 signaling 5E-01 1.79E-02 PDPK1

ErbB4 signaling 4.87E-01 1.72E-02 PDPK1

Erythropoietin signaling 1.12E+00 2.99E-02 PDPK1, NFKBIE

HGF signaling 2.95E-01 9.62E-03 ELF3

HIF1a signaling 3.07E-01 1E-02 MMP25

IGF-1 signaling 1.55E+00 3.09E-02 GRB10, PDPK1, SOCS4

IL-1 signaling 8.99E-01 2.2E-02 GNAT1, NFKBIE

IL-10 signaling 4.32E-01 1.47E-02 NFKBIE

IL-17A signaling in airway cells 4.53E-01 1.56E-02 NFKBIE

IL-17A signaling in fibroblasts 6.75E-01 2.86E-02 NFKBIE

il-6 signaling 2.63E-01 8.62E-03 NFKBIE

Induction of apoptosis by HIV1 1.22E+00 3.39E-02 NFKBIE, RIPK1

Insulin receptor signaling 6.69E-01 1.56E-02 GRB10, PDPK1

JAK/Stat signaling 4.12E-01 1.39E-02 SOCS4

Lymphotoxin β receptor signaling 5.13E-01 1.85E-02 PDPK1

MIF regulation of innate immunity 6.14E-01 2.44E-02 NFKBIE

mTOR signaling 4.57E-01 1.1E-02 PDPK1, PRKAB2

NF-KB activation by viruses 1.06E+00 2.74E-02 NFKBIE, RIPK1

NF-KB signaling 4.99E-01 1.18E-02 NFKBIE, RIPK1

NGF signaling 2.89E-01 9.43E-03 PDPK1

P53 signaling 3.13E-01 1.02E-02 CCND2

PI3K signaling in B lymphocytes 6.94E-01 1.63E-02 PDPK1, NFKBIE

PI3K/AKT signaling 7.05E-01 1.65E-02 PDPK1, NFKBIE

PKCθ signaling in T lymphocytes 2.71E-01 8.85E-03 NFKBIE

PPARa/RXRa activation 9.95E-01 1.82E-02 FASN, NFKBIE, PRKAB2

Regulation of IL-2 expression in activated
and anergic T lymphocytes

3.86E-01 1.28E-02 NFKBIE
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Canonical pathways p-Value Ratio Molecules

Role of IL-17A in arthritis 5.13E-01 1.85E-02 NFKBIE

Role of NFAT in regulation of the immune
response

5.1E-01 1.2E-02 GNAT1, NFKBIE

Role of PI3K/AKT signaling in the
pathogenesis of influenza

4.75E-01 1.67E-02 NFKBIE

Role of PKR in interferon induction and
antiviral response

6.24E-01 2.5E-02 NFKBIE

STAT3 pathway 4.08E-01 1.37E-02 SOCS4

TNFR1 signaling 1.4E+00 4.26E-02 NFKBIE, RIPK1

TNFR2 signaling 7.62E-01 3.57E-02 NFKBIE

AMPK signaling 1.49E+00 2.26E-02 PDPK1, FASN, ADRA2B, PRKAB2

Angiopoietin signaling 4.47E-01 1.54E-02 NFKBIE

April mediated signaling 6.43E-01 2.63E-02 NFKBIE

ATM signaling 4.81E-01 1.69E-02 MRE11A

B cell activating factor signaling 6.24E-01 2.5E-02 NFKBIE

B cell receptor signaling 4.92E-01 1.17E-02 PDPK1, NFKBIE

CD27 signaling in lymphocytes 5.34E-01 1.96E-02 NFKBIE

CD28 signaling in T helper cells 7.5E-01 1.77E-02 PDPK1, NFKBIE

CD40 signaling 4.53E-01 1.56E-02 NFKBIE

EIF2 signaling 4.89E-01 1.16E-02 PDPK1, EIF2AK4

ErbB signaling 3.58E-01 1.18E-02 PDPK1

ErbB2-ErbB3 signaling 5E-01 1.79E-02 PDPK1

ErbB4 signaling 4.87E-01 1.72E-02 PDPK1

Erythropoietin signaling 1.12E+00 2.99E-02 PDPK1, NFKBIE

HGF signaling 2.95E-01 9.62E-03 ELF3

HIF1a signaling 3.07E-01 1E-02 MMP25

IGF-1 signaling 1.55E+00 3.09E-02 GRB10, PDPK1, SOCS4

IL-1 signaling 8.99E-01 2.2E-02 GNAT1, NFKBIE

IL-10 signaling 4.32E-01 1.47E-02 NFKBIE

IL-17A signaling in airway cells 4.53E-01 1.56E-02 NFKBIE

IL-17A signaling in fibroblasts 6.75E-01 2.86E-02 NFKBIE

IL-6 signaling 2.63E-01 8.62E-03 NFKBIE

Induction of apoptosis by HIV1 1.22E+00 3.39E-02 NFKBIE, RIPK1

Table 1. Key canonical pathway analysis of the potential mature EBOV miRNA target genes.
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Figure 2. Bioinformatics analysis of the genetic regulatory network of target genes of EBOV-encoded microRNA-like
small RNAs (A and B). The key regulation network of the potential target genes of EBOV-encoded microRNA-like
small RNAs.

Based on the gene regulation network (GRN) analysis (Figure S1), it was found that target
genes, FASN, RUNX1T1, and ELF3, were important immune and inflammation response
factors and actively interacted with transcription regulator, such as KLF2 and NF-kB in host
cells (Figure 2A) [40, 41]. They were also the key co-regulator of TNF complex in human
immune system (Figure 2B) [42], implying that the EBOV might inhibit the infection response
of immune system by affecting the related signaling pathway using noncoding RNA.
Furthermore, it was speculated that the mature EBOV-encoded microRNA-like small RNAs
might induce large-scale epigenetic modification in host genome to downregulate the
expression of epigenetic factor, such as histone h3, HDAC5, JARID2, and SMARCA4, resulting
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in the inactivation of immune signaling and immune system with the antiviral response
(Figure 2A and 2B) [40–45].

3.3. Potential EBOV genome-encoded microRNA-like small RNAs associated with the
Immune response-related pathways

Additionally, NF-kB and RIPK were also involved in the RIG-I-like receptor pathway (Figure
3) [46, 47]. As shown in Figure 3, the RIG-I-like receptor pathway played a key role in antiviral
response that is a sensor for viruses such as influenza A, Rhabdovirus, Flavivirus, Paramyx‐
ovirus, Epstein-Barr virus, and Filovirus [48]. The RIG-I-like receptor pathway is stimulated
during RNA virus infection by the interaction between cytosolic RIG-I and viral RNA struc‐
tures that contain short hairpin dsRNA and 5’ triphosphate (5’ppp) terminal structure. The
EBOV might utilize the microRNA-like small RNAs to inhibit the RIG-I-like receptor pathway
to evade the host defense mechanisms, or conversely to trigger apoptosis responses as a

Figure 3. The RIG1I like receptor pathway associated with the potential target genes of EBOV-encoded microRNA1-
like small RNAs. The target genes of EBOV-encoded microRNA1-like small RNAs, NF1kB, and RIPK, were involved in
the RIG1I-like receptor pathway to trigger IFN signaling pathway with the antiviral response.
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mechanism to increase viral infection [49, 50]. For viruses, effective RIG-I-mediated antiviral
responses are dependent on functionally active LGP2. The dysfunction of LGP2 resulted in
promoting viral replication, preventing virus-induced apoptosis, and suppressing the immune
response for the invading pathogen [51]. Certain retroviruses, such as HIV-1, encode a protease
that directs RIG-1 to the lysosome for degradation, and thereby evade RIG-1 mediated
signaling. RIG-I and MDA-5 are involved in activating interferon (IFN) signaling pathway
with the antiviral response.

4. Conclusions

MicroRNAs are encoded by cellular or viral genomes and play an essential role in numerous
cellular processes, including viral infection, viral immune evasion, and antiviral cell-mediated
immune response. Most viral genome-encoded microRNA-like small RNAs have been
identified by traditional cloning strategy from virus-infected cells, yet others have been
identified following computational prediction. Using the VMir analyzer program, the polyo‐
mavirus simian vacuolating virus 40 (SV40) [22] and Merkel Cell virus (MCV) [13] have been
found to encode microRNA-like small RNAs, suggesting that VMir analyzer program is an
effective tool for searching new viral miRNA-like small RNAs [52]. Therefore, we analyzed
the genome of EBOV with the VMir software and obtained four pre-miRNAs located in the
coding region of viral genome, indicating that the RNA secondary structures of EBOV genome
might be processed into microRNA-like small RNAs [53, 54].

Infected cells have several signaling mechanisms to sense and respond to virus infection [55],
for example, cross talk between different cellular pathways to modulate the expression and
antiviral function of interferon (IFNs) with RIG-I-like receptor pathway and specific gene
products. RIG-I-like receptor pathway and IFNs cytokines are important regulators of innate
and adaptive immune responses [56]. Besides their antiviral role, they are potent regulators of
cell growth and have immunomodulatory activity. INFs were activated after virus infection,
probably through viral dsRNA and other viral gene products. The most intensely studied
molecule in the RIG-I-like receptor pathway is the dsRNA-activated serine/threonine protein
kinase (PKR). PKR was activated in the presence of cytoplasmic dsRNA, leading to the rapid
phosphorylation of eukaryotic initiation factor eIF2 and subsequent inhibition of both host and
viral mRNA [57, 58].

Although the bioinformatics prediction could be inaccurate, the bioinformatics prediction was
potentially more selective and effective than experimental method. The target genes of viral
genome-encoded microRNA-like small RNAs would help to develop an effective treatment
for the EBOV infection.

5. Limitations

Due to the high mutation rate of reverse transcription in replication, EBOV presents numerous
mutations over viral genome during host adaption, suggesting that the viral genome is not

Prediction of Ebolavirus Genomes Encoded MicroRNA-Like Small RNAs Using Bioinformatics Approaches
http://dx.doi.org/10.5772/62944

93



exactly the same among various EBOV strains. Thus, it is difficult to find microRNAs that are
completely conserved among different viral strains due to genome mutations.

However, it is possible that some microRNA-like small RNAs are relatively conserved among
diverse viral adapted hosts. Moreover, the expression pattern of viral microRNA-like small
RNAs was highly unpredictable. Therefore, it might be difficult to validate the EBOV genome-
encoded microRNA-like small RNAs using experimental method.
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